LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases.

نویسندگان

  • R H Böger
  • K Sydow
  • J Borlak
  • T Thum
  • H Lenzen
  • B Schubert
  • D Tsikas
  • S M Bode-Böger
چکیده

Asymmetrical dimethylarginine (ADMA) is an endogenous nitric oxide synthase inhibitor. It is formed by protein arginine N-methyltransferases (PRMTs), which utilize S-adenosylmethionine as methyl group donor. ADMA plasma concentration is elevated in hypercholesterolemia, leading to endothelial dysfunction and producing proatherogenic changes of endothelial cell function. Four different isoforms of human PRMTs have been identified. Because the release of ADMA from human endothelial cells is increased in the presence of native or oxidized LDL cholesterol, we investigated the potential involvement of PRMT activity and gene expression in this effect. We found that the production of ADMA by human endothelial cells is upregulated in the presence of methionine or homocysteine and inhibited by either of the methyltransferase inhibitors S-adenosylhomocysteine, adenosine dialdehyde, or cycloleucine. This effect is specific for ADMA but not symmetrical dimethylarginine. The upregulation of ADMA release by native and oxidized LDL is abolished by S-adenosylhomocysteine and by the antioxidant pyrrollidine dithiocarbamate. Furthermore, a methyl-(14)C label is transferred from S-adenosylmethionine to ADMA but not symmetrical dimethylarginine, in human endothelial cells. The expression of PRMTs is upregulated in the presence of native or oxidized LDL. Our data suggest that the production of ADMA by human endothelial cells is regulated by S-adenosylmethionine-dependent methyltransferases. This activity is upregulated by LDL cholesterol, which may be due in part to the enhanced gene expression of PRMTs. In concentrations reached by stimulation of methyltransferases (5 to 50 micromol/L), ADMA significantly inhibited the formation of (15)N-nitrite from L-[guanidino-(15)N(2)]arginine. These findings suggest a novel mechanism by which ADMA concentration is elevated in hypercholesterolemia, leading to endothelial dysfunction and atherosclerosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endothelial Cells : Involvement of S-Adenosylmethionine LDL Cholesterol Upregulates Synthesis of Asymmetrical Dimethylarginine in Human

Asymmetrical dimethylarginine (ADMA) is an endogenous nitric oxide synthase inhibitor. It is formed by protein arginine N-methyltransferases (PRMTs), which utilize S-adenosylmethionine as methyl group donor. ADMA plasma concentration is elevated in hypercholesterolemia, leading to endothelial dysfunction and producing proatherogenic changes of endothelial cell function. Four different isoforms ...

متن کامل

Epigenetic upregulation of p66shc mediates low-density lipoprotein cholesterol-induced endothelial cell dysfunction.

Hypercholesterolemia characterized by elevation of low-density lipoprotein (LDL) cholesterol is a major risk factor for atherosclerotic vascular disease. p66shc mediates hypercholesterolemia-induced endothelial dysfunction and atheromatous plaque formation. We asked if LDL upregulates endothelial p66shc via changes in the epigenome and examined the role of p66shc in LDL-stimulated endothelial c...

متن کامل

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

Protein Arginine Methylation Is More Prone to Inhibition by S-Adenosylhomocysteine than DNA Methylation in Vascular Endothelial Cells

Methyltransferases use S-adenosylmethionine (AdoMet) as methyl group donor, forming S-adenosylhomocysteine (AdoHcy) and methylated substrates, including DNA and proteins. AdoHcy inhibits most methyltransferases. Accumulation of intracellular AdoHcy secondary to Hcy elevation elicits global DNA hypomethylation. We aimed at determining the extent at which protein arginine methylation status is af...

متن کامل

Roads to dysfunction: argininase II contributes to oxidized low-density lipoprotein-induced attenuation of endothelial NO production.

Oxidized low-density lipoprotein (oxLDL) is considered to be the strongest proatherogenic lipoprotein. OxLDL is rapidly taken up by endothelial cells and macrophages and via the steps of foam cell formation and cell death, oxLDL eventually accumulates in the lipid core of atherosclerotic plaques.1 The interaction of oxLDL with cells is mediated by several receptors.2 Members of the scavenger re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 87 2  شماره 

صفحات  -

تاریخ انتشار 2000